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Abstract

The bubble size, surface and volume distributions in two and three phase flows are essential to determine energy and
mass transfer processes. The traditional approaches commonly use a conditional probability density function of chord-
lengths to calculate the bubble size distribution, when the bubble size, shape and velocity are known. However, the
approach used in this paper obtains the above distributions from statistical relations, requiring only the moments inferred
from the measurements given by a sampling probe. Using image analysis of bubbles injected in a water tank, and placing
an ideal probe on the image, a sample of bubble diameter, shape factor and velocity angle are obtained. The samples of the
bubble chord-length are synthetically generated from these variables. Thus, we propose a semi-parametric approach based
on the maximum entropy (MaxEnt) distribution estimation subjected to a number of moment constraints avoiding the use
of the complex backward transformation. Therefore, the method allows us to obtain the distributions in close form. The
probability density functions of the most important length scales (D,D20,D30,D32), obtained applying the semi-parametric
approach proposed here in the ellipsoidal bubble regime, are compared with experimental measurements.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The precise knowledge of bubble size distribution in two and/or three phase flows is an important aspect in
many practical applications where the processes of energy and mass transfer are controlled by such distribu-
tion. Intrusive crossing probes were the first experimental techniques used, and in many instances the only
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ones available, especially in flows whose local void fraction may be larger than 20%, as well as in 3D fluidized
beds. In this latter case the opacity of the bed precludes the use of non-intrusive techniques.

Several phase-detection probes have been developed in the past, a detailed review of intrusive and
non-intrusive measurement techniques applied to the field of fluidized beds, together with their advantages
and disadvantages can be found in Cheremisinoff (1986). More recently Boyer et al. (2002) reviewed the appli-
cation of these techniques to the case of two (gas/liquid) and three phase flows (gas/liquid/solid).

If the two-phase flow is one-dimensional, a two-point probe can be used to extract the chord-length and the
bubble velocity from the signal. However, in a three-dimensional flow a four-point probe must be used to
obtain reliable information. Furthermore, if the bubbles are in the elliptical regime, the angle of attack of
the bubble with respect to the probe (Lucas and Mishra, 2005), the bubble shape (Luther et al., 2004; Guet
et al., 2005), the bubble velocity and the time taken to cross the probe can be obtained when the bubble crosses
the four-point probe (Mudde and Saito, 2001).

The analysis of the signal given by the phase detection probes is a very complex, and time-consuming pro-
cedure (Cartellier, 1999). Therefore, it is important to develop efficient techniques to obtain the bubble size,
area or volume PDFs, as well as the mean variables, with the minimum number of samples possible. Once
the bubble shape, angle of attack and chord-length distributions are established, three approaches are com-
monly used to obtain the bubble size distribution, namely parametric, semi-parametric and non-parametric.
Lee et al. (1990), Liu and Clark (1995) and Clark et al. (1996) proposed parametric methods where a
chord-length PDF is a priori estimated from the measurements (typically Gamma, Rayleigh or lognormal
distributions). On the other hand, the bubble size distribution can be inferred by a backward transformation
(Herringe and Davis, 1976; Liu and Clark, 1995; Clark et al., 1996) or by an optimization problem (Lee et al.,
1990). Although these methods require the use of complicated backward transformations and are quite sen-
sitive to discontinuities on the chord distribution, their main advantage is that they provide a bubble size dis-
tribution in closed form. However, for a large variety of distributions, the shape of this function is usually
unknown and the estimate of the PDF parameters is not fully established.

In the case of non-parametric methods, the chord-length PDF does not need to be previously established.
Dias et al. (2000) proposed a non-aprioristic statistical method for spherical bubbles to describe the influence
of the angle of attack on the apparent (measured) and actual (real) distribution and they applied the model to
their experiments, carried out in an air/water bubbly flow regime. Furthermore, Clark and Turton (1988) and
Turton and Clark (1989) proposed a non-parametric numerical method, which was shown to be numerically
unstable for small sampling records. Later on, Liu et al. (1996, 1998), using a Parzen window with ellipsoidal
bubbles, proposed a non-parametric model that Santana and Macı́as-Machı́n (2000) extended to consider
bubbles with non-zero angles of attack. Unfortunately, these methods incorporate the disadvantages that
the bubble size distribution inferred is not in a closed form and the data must be divided in bins to take into
account the bubble shape and/or velocity variation. On the other hand, the main advantage is that the models
do not require the assumption of a given shape for the distribution.

Finally, the semi-parametric method proposed here, and based on the estimate of the maximum entropy
density, hereafter denoted MaxEnt, subjected to a certain number of moment constraints (Ryu, 1993), avoids
the disadvantages described above. Although, the PDF obtained should match a certain number of moments
obtained from experimental measurements, the number of moments required is not predetermined. Therefore,
although the problem reduces to fix the values of a few parameters, the number of parameters is a priori
unknown.

To establish the size, the surface or the volume moments from the signals obtained by the sampling probes,
these moments must be appropriately related to the moments of functions that only depend on the chord-
length, the bubble shape or the angle of attack, since these variables can be measured or estimated from
the measurements. Liu and Clark (1995) showed these relationships for the first two moments, both for an
ellipsoidal and a truncated ellipsoidal bubble with pure vertical rising velocity. However, in this paper, the size,
surface and volume moments calculated from the probe signal are obtained considering ellipsoidal bubbles
raising with any angle of attack, and using the maximum entropy estimate of PDF to determine the number
moments needed. As a result, we will be able to obtain the bubble size, surface or volume distributions.

As already mentioned above, the method proposed here is restricted to the ellipsoidal bubble regime
reported by Clift et al. (1978) who dividing the bubble shapes in ellipsoidal, ellipsoidal cap and skirted,
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depending on the Reynolds and the Eötvös numbers with the Morton number as parameter, in two-phase
(gas/liquid) systems. Other expressions have been proposed to take into account the contribution of the bub-
ble shape to correlate the bubble size with the bubble velocity in gas/liquid reactors (Karamanev, 1994; Ngu-
yen, 1998), which can be used to estimate the bubble shape from the probe signal.

In summary, in this paper we aim at estimating the bubble size, area and volume distributions from probe
signals without assuming a given shape factor of ellipsoidal bubbles, minimizing the number of samples
required to obtain reliable PDFs and avoiding the backward transformation procedure.

Although it is not the purpose of the present paper to discuss the measurement errors in chord-length deter-
mination from probe readings due to bubble–probe interaction (Julia et al., 2005), uncertainly in bubble ori-
entation and shape, etc., it is important to mention that significant errors in PDFs estimation arise in practice
since the actual chord obtained from an ideal probe does not coincide with the measured chord, especially in
cases of small chords (Dias et al., 2000) and distorted bubbles (Chaumat et al., 2005).

The paper is organized as follows: the second section is dedicated to obtain the maximum entropy (Max-
Ent) distribution, subjected to an appropriate number of constrains on the raw data moments, with a stable
and fast procedure. The third section introduces a simulation procedure and the implementation of the
MaxEnt distribution estimate method as well as the experimental set-up. Finally a discussion of the results
provided by the simulations, examining the errors generated when the bubble size distribution is estimated,
is given in the last section.

2. Raw moments and MaxEnt estimation

2.1. Raw moment estimators

To estimate the raw moments (moments of the distribution referred to zero) we will consider the oblate,
ellipsoidal bubble displayed in Fig. 1. This figure also shows the coordinate system, the variables used to deter-
mine the PDFs as well as their geometric relationships, where D is the diameter of the bubble, y is the chord-
length, v is the bubble velocity, h is the zenith angle with respect to the coordinate system located at the bubble
axis and a is a shape factor defined as the minor-to-major axis ratio.

The chord-length density function can be obtained assuming that the minimum distance between the center
of the bubble and the probe path is uniformly distributed (Werther, 1974). Furthermore, Santana and Macı́as-
Machı́n (2000) showed that, knowing the velocity vector, shape factor and the bubble diameter, the condi-
tional probability density function of the chord-length measured by the probe can be given by
P ðyjD; h; aÞ ¼ 2yt2
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It can be observed from Eq. (1) that the raw moments of the bubble diameter can be related with the measur-
able variables. For example, applying the total probability theorem to the following expectation value:
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Fig. 1. Oblate spheroidal bubble model.
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and inverting the integral limits as
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the diameter raw moments can be expressed as
hDkjh; ai ¼ k þ 2
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Finally using the following expectation function property:
hhðX ÞgðY ÞiX ;Y ¼ hhðX ÞhgðY ÞjX ¼ xiY iX ð5Þ
the kth moment of the diameter can be related to the chord-length, the bubble shape and the incident angle as
k þ 2
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Thus, the different moments of the bubble diameter can be estimated from the chord-length, the angle of at-
tack and the bubble shape as
mkðDÞ ¼
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where N is the number of samples taken. This estimation is in agreement with the experimental results,
using a dual-sensor resistivity probe, carried out by Kalkach-Navarro et al. (1993), who obtained that,
for nearly spherical bubbles, the mean diameter is 1.5 times the mean chord-length. Notice that Eq. (7)
with a = 1 and k = 1 recovers the same relationship between the mean diameter and the mean chord-
length.

In practical cases, when intrusive probes are used to infer the bubble diameter distributions in two-phase
flows, the variables obtained from probe signals depend on the number of points of the sampling probe.
For two-point probes the variables extracted from the probe signal are the bubble residence time and the
elapsed time between probes tips interception. From these variables, and knowing the distance between the
two tips, the apparent bubble velocity and apparent chord-length can be determined. Furthermore, with
the chord-length and bubble velocity obtained, the bubble shape factor of the detected bubble can be
bounded if a suitable correlation between size and aspect ratio is employed. For example, in an almost
stagnant medium, the bubble deformation is mainly a function of the Weber number (Taylor and Acrivos,
1964) or the Eötvös number (Wellek et al., 1966). Thus the shape factor is bounded between the Weber (or
Eötvös) number based on the chord-length and bubble velocity obtained and that based on the maximum
chord-length and velocity obtained in the entire data set. Note that, in the case of two-point probes the
apparent and actual chord-length and velocity are only the same when the angle of attack between the
bubble and the probe is zero. In other cases, four-point probes are required to extract the bubble shape
factor and the bubble orientation from probe signals (Lucas and Mishra, 2005; Guet et al., 2005; Luther
et al., 2004).

The surface, volume and the most important bubble raw moments, i.e. volume equivalent diameter, surface
equivalent diameter, and Sauter diameter, can be obtained as in Eq. (7). The geometrical relationships and the
raw moments estimators of such variables are summarized in Table 1.

It is important to notice that in Eqs. (7)–(9) the bubble diameter k-moment depends on the chord-length k-
moment, while the surface k-moment depends on the chord-length 2k-moment and the volume k-moment
depends on the chord-length 3k-moment. Thus, for a limited number of samples, the estimations of the surface
and volume moments are not as good as those of the bubble diameter since the deviation of the sampled
moments from their real values increases as the order increases. Considering the surface/volume PDFs, their
lower moments, which provide the global shape of the distributions, come from the higher order moments of
the chord-length. Therefore, to give reliable estimates of moments of the bubble surface and/or volume, it is
required a sampling record larger than that needed to estimate the bubble size moments.



Table 1
Geometrical relationship and raw moments estimators

Geometrical relationship Raw moments estimator
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Although the method proposed in this paper to estimate the raw moments from the sampled data has been
developed for ellipsoidal bubbles, the procedure can be applied to any bubble shape model. In fact, Liu and
Clark (1995) obtained the mean and standard deviation for a truncated ellipsoidal bubble.

Though the raw moment estimates are developed here to obtain the MaxEnt density, they can also be used
in the parametric method, assuming a PDF (typically Gamma, Rayleigh or lognormal), to obtain the param-
eters of the PDF (mean and standard deviation for the lognormal, for example). However, we will show that
better results can be obtained if a MaxEnt distribution is initially determined, and used later on with the para-
metric model to extract the shape of the PDFs. Before proceeding any further, we will briefly describe the
procedure employed to determine the maximum entropy function (MaxEnt).

2.2. Maximum entropy (MaxEnt) estimate

The entropy principle of Shannon yields, for a given set of moments, a density function with the minimum
amount of previous information. Jaynes (1957) popularized this method in the field of statistical mechanics
and defined the maximum entropy distribution as ‘‘uniquely determined as the one which is maximally non-com-

mittal with regard to missing information, and that it agrees with what is known, but expresses maximum uncer-
tainty with respect to other matters’’.

As a result, the problem of estimating the maximum entropy distribution subjected to a given number of
known raw-moment constraints can be formulated as follows:
max
pðDÞ

Z
D2D
�pðDÞ lnðpðDÞÞdD

s:t:

Z
D2D

pðDÞdD ¼ 1Z
D2D

DipðDÞdD ¼ hDii; i ¼ 1; . . . ;K

ð13Þ
where p(D) is the PDF, hDii is the ith raw moment, D is the interval variation of the random variable D (the
bubble diameter in our case) and the function to maximize is named the Shannon’s entropy.
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Ryu (1993) showed that the Lagrangian method produces the following MaxEnt distribution for K moment
constraints as a solution of the aforementioned optimization problem:
pKðD; kÞ ¼ exp
XK

i¼1

�kiDi

 !,Z
D2D

exp
XK

i¼1

�kiDi

 !
dD ð14Þ
where ki is the Lagrange multiplier for the ith moment constraint.
In view of the above result the MaxEnt distribution subjected to known K moment constraints is an expo-

nential series that depends on the Lagrange multipliers for the K moment constraints.
Unfortunately, these results were barely used at a practical level due to difficulties in their numerical imple-

mentation until Rockinger and Jondeau (2002) developed a new, stable and fast procedure to find the values of
the Lagrange multipliers using the Newton’s method. They showed that, if the Hessian matrix is full of rank,
the Lagrange multiplier values could be obtained iteratively as
kðkÞ ¼ kðk�1Þ � H�1ðkðk�1ÞÞGðkðk�1ÞÞ; ð15Þ

starting with k(0) = (0, . . . , 0) and where H and G are the Hessian matrix and the gradient vector respectively,
defined as
H ijðkðk�1ÞÞ ¼ oQðkðk�1ÞÞ
oki okj
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Here Q is the potential function to be minimized, given by
QKðD; kÞ ¼
Z

D2D
exp
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For practical purposes, the raw moments are unknown and they must be estimated from the measurements.
For example, if a sample of diameters is available, the raw moments of the sample miðDÞ ¼ 1

N

PN
j¼1Di

j can be
used to estimate the raw moments, hDii. Here, N is the sample size and Dj the jth diameter measured.

As a result, the MaxEnt distribution, subjected to K moment constraints, can be expressed as
pKðD; kÞ ¼ exp
XK
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�kiðDi � miðDÞÞ
 !,Z

D2D
exp
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dD ð19Þ
To calculate the above integrals numerically a 96-point Gaussian quadrature was used, although any other
suitable method could be applied.

Note that, the experimental data available from a measuring probe is the chord-length of the bubbles rather
than their diameter. Therefore, the moments of the sampled diameter (for example) cannot be used to estimate
the raw moments, hDii, and a function of the known variables (chord, shape and angle) must be used to deter-
mine them (see Eq. (7)).

Thus, if an estimator for raw moments of the bubble diameter, area or volume is available, the MaxEnt
distribution of bubble diameter, area or volume can be efficiently determined. Notice that the procedure
can be performed avoiding the use of the backward transformation previously proposed by Liu and Clark
(1995) for bubbles with a purely vertical rise and revised later on by Santana and Macı́as-Machı́n (2000)
for bubbles with a non-vertical rise.

Of course, the bubble surface density function can be obtained using the same procedure described by Eqs.
(1)–(18) for the bubble size PDF but with the bubble surface raw moments obtained from the experimental
measurements with Eq. (8), or using the MaxEnt estimate for the surface equivalent diameter as follows:
pKðS; kÞ ¼
exp

XK

i¼0
� ki

S
p

� �i=2
 !

2p
S
p
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ð20Þ
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Similarly, the bubble volume density function can also be deduced from the volume equivalent diameter Max-
Ent estimate as
pKðV ; kÞ ¼
exp

XK

i¼0
� ki

6V
p

� �i=3
 !

p
2

6V
p

� �2=3
ð21Þ
This last procedure, given by Eqs. (20) and (21), has been shown to be more precise to deduce the surface or
volume distributions than the MaxEnt distribution obtained from the moments in Eqs. (8) and (9) as will be
shown in Fig. 9.

3. Experimental and simulation procedure

To clarify the procedure described in the previous section, we will determine the size, surface and volume
PDFs of bubbles injected in a water tank. Since we did not have access to crossing probe to perform our mea-
surements, the bubble diameter, shape factor and angle of attack was obtained by image processing of images
acquired with a high-speed camera, and the chord-lengths were synthetically generated with a Monte-Carlo
method. Thus, a cloud of rising bubbles was generated by injecting a certain flow of air through a hypodermic
needle located at the bottom of an acrylic tank filled with water. The dimensions of the tank,
500 mm · 500 mm of cross-sectional area (Fig. 2), were large enough to ensure that the side walls did not affect
the motion of the air bubbles. In addition, in all the experiments reported here the measuring window was
placed 100 mm downstream of the injection point and more than 500 mm below the free surface to avoid
undesired effects of either the bottom or the free surface.
Fig. 2. Experimental set-up.
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The time evolution of the bubbles, as they were rising up, was recorded with a Kodak Ektrapro high-speed
camera, working at 1000 frames per second. At the working frame rate, the resolution of the images was
256 · 240 pixels, which corresponded to a measuring window of 16 mm · 15 mm. The position of the bubbles
was obtained using the tracking algorithm described in Rodrı́guez-Rodrı́guez et al. (2003). Since this algo-
rithm was developed to detect the breakage or coalescence of bubbles, it was also able to detect overlapping
bubbles within the images. Therefore, when a cluster of two or more overlapping bubbles was found, the algo-
rithm automatically rejected it avoiding the acquisition of undesired data.

In each frame of the high-speed movie, the coordinates of the centroid of any single bubble that crossed the
virtual probe was determined and employed to compute its bubble instantaneous velocity, the minor and
major axes (D,aD) of the ellipse that best fitted the perimeter of the bubble, as well as the angle between
the minor axis and the velocity vector, h. An illustrative example is shown in Fig. 3. A sample of 350 bubbles
was obtained experimentally. This procedure provides a 2D projection of a 3D bubble and, consequently,
when the projection corresponds to the side view rather than to the front view, the shape factor may be over-
estimated by a factor as shows Fig. 4. Therefore, assuming that bubble inclination with respect to the vertical
direction is isotropic, the errors in the characteristic lengths have been obtained and given in Table 2.

Unfortunately, it was not possible to extract the chord-length of the bubbles crossing the virtual probe, y,
from the two-dimensional images. Thus, several sets of chord-lengths were synthetically generated for the
ellipsoidal bubble model with the Monte-Carlo method, using the experimental values of D, a, h, obtained
from the images processed, and applying Eq. (1). An example of five different simulations of chord-length sam-
ples obtained from the same 350 bubbles recorded in a characteristic data set is showed in Fig. 5.

The bubble size, area or volume moments could be estimated for each set of chord-lengths generated and,
consequently, their MaxEnt distributions could be calculated as follows:

(1) First the domain D where the diameters (D,D20,D 30,D32), area (S) or volume (V) PDFs was selected.
For our simulations, the lower bound was set to 0 and the upper one was taken slightly larger than
the maximum bubble size, area or volume obtained from the chord-lengths simulated.

(2) Second, the MaxEnt distribution was estimated subjected to K known sample moment constraints. In
our case we started with K = 2, and used Eq. (15) with the initial values kð0Þ ¼ 0; . . .K ; 0ð Þ, until the con-
vergence criterion G(k(k�1)) 6 10�6 was fulfilled. It must be said that procedure normally reached the
convergence criteria in less than 10 iterations.
Fig. 3. Image of a bubble together with its best-fit ellipse.



Fig. 4. Measured minor semi-axis of an oblate spheroid from image analysis (lateral view).

Table 2
Variables overestimation from 2D bubble projections

Variable a D20 D30 D32 S V

Relative error (%) 15 3.5 4.8 7.3 7.3 15

Fig. 5. Synthetically generated chord-length distributions from the two-dimensional images.
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(3) Finally, steps (1) and (2) were repeated until the Hessian matrix of Eq. (15) was not full of rank, or
K = 10.

Notice that this process is very easy to implement and has a very low computational cost. The procedure
also allows us to calculate a maximum of nine MaxEnt distributions, fixing a maximum of 10 raw sample
moments.

However, since the real moments are unknown and the error of the raw moment estimates increases as their
order increases, we have to decide which one of the K different PDF calculated best fits the true PDF. For that
purpose, the Kullback–Leibler entropy discrepancy criterion (Kullback and Leibler, 1951) was applied. This
criterion indicates that if the Kullback–Leibler discrepancy, DKL, given by
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DKLðKÞ ¼
Z

D
pKðDÞ logðpKðDÞ=pKþ1ðDÞÞdD ð22Þ
is minimum near 0, the two distributions are the same and the inclusion of a new moment constraint does not
contribute to maximize the information content of the PDF. Thus, the optimum distribution must be the Max-
Ent distribution that fixes the maximum number of moment constraints (K) and has the minimum Kullback–
Leibler discrepancy value.

To clarify the different concepts above described, we will apply our semi-parametric procedure to our exper-
imental measurements with the aim at determining the best-fitted bubble size distribution in the following
section.

4. Results and discussion

Fig. 6 shows the MaxEnt distributions calculated from the experimental measurements above reported for
an increasing number of the moment constrains, together with the one experimentally measured. It can be
observed that the MaxEnt distribution becomes closer to the experimental one as the number of moment con-
strains increases from K = 2 to K = 5. The Kullback–Leibler entropy discrepancy criterion, also shown in
Fig. 6 as an inset, decreases with the number of moment constraints until the MaxEnt distribution is subjected
to the 6th raw sample moment. Therefore, for this simulation, the optimum MaxEnt distribution is the one
that fixes the first five raw sample moments and, the inclusion of the 6th raw sample moment does not improve
the estimated distribution.

Fig. 7 shows the comparison of the optimal MaxEnt distributions (dashed lines), obtained from the five
simulations of the chord-length showed in Fig. 5, together with the experimental distribution (solid lines)
of four of the most important characteristic diameters, namely D, D20, D30, D32. To obtain the optimal
MaxEnt distributions of D20, D30, D32 we followed the same procedure described to obtain MaxEnt distribu-
tion of D but using the experimental values of D20, D30, and D32 for each of the 350 bubbles recorded in our
measurements.
Fig. 6. Effect of the number of moment constraints on the MaxEnt estimation.



Fig. 7. Optimal MaxEnt estimation obtained from the five simulations of the chord-length showed in Fig. 5, together with the
experimental distribution (solid lines), for (a) bubble diameter, D, (b) surface equivalent diameter, D20, (c) volume equivalent diameter,
D30, (d) Sauter mean diameter for five simulations, D32.
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It can be observed in Fig. 7 that the MaxEnt estimation becomes very close to the experimental distribution
for all the characteristics diameters. Note that for these approximations, a record of only 350 bubbles were
used, whereas other non-parametric methods, i.e. Liu et al. (1996, 1998) and Santana and Macı́as-Machı́n
(2000), require almost 5000 bubbles and need to use a backward transformation to obtain a reliable distribu-
tion. Consider that, if the bubble shape cannot be obtained experimentally, it must be inferred from the bubble
velocity, for example, and, consequently, the error in the calculations of the raw sampled moments would
increase due to the uncertainty in the bubble shape estimation.

Fig. 8 shows the bias of the first sample moments of the above mentioned characteristic diameters, namely
mean, standard deviation, skewness and kurtosis, with respect to the experimental ones (indicated with a solid
circle). Notice that as the order of the moment increases, K, its deviation from the experimental value also
increases, being the kurtosis the one showing the largest deviations. However this bias could be reduced
increasing the number of bubbles in the sample. The definition of the first moments, together with the mean
values of the first four moments of the experimental and simulated characteristic diameters showed in Fig. 8 is
provided in Table 3 for comparison purposes.

Fig. 9 shows the bubble surface and the volume PDFs estimated from the optimal MaxEnt distribution cal-
culated from Eqs. (14)–(18) for S and V, using the surface and volume sampled raw moments given by Eqs. (8)
and (9) respectively (Fig. 9a and c). In addition, Fig. 9 also shows the bubble surface and volume PDFs esti-
mated from Eqs. (20) and (21) using the Lagrange multipliers, ki, corresponding to D20 and D30 respectively
(Fig. 9b and d). The different curves shown in each plot represent the distributions obtained from five differ-
ent Monte-Carlo simulations of the bubble chord-length. It can be seen that the PDFs given by Eqs. (20) and
(21) estimate the real PDF slightly better than the optimal MaxEnt estimation. Perhaps the most important



Fig. 8. Deviation of the first sample moments, i.e. mean, standard deviation, skewness and kurtosis, of three characteristics diameters
(D20,D30,D32) with respect to the experimental values.

Table 3
Error in the calculation of the first four moments of the characteristic diameters shown in Fig. 8

Mean (mm) Std (mm) Skewness (�) Kurtosis (�)

l = hxi r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðx� lÞ2i

q
hðx�lÞ3i

r3

hðx�lÞ4i
r4

D20 Experimental 4.98 0.41 �0.08 2.82
Simulated 4.92 0.54 �3.29 19.73

D30 Experimental 4.72 0.35 �0.11 2.83
Simulated 4.67 0.49 �3.62 22

D32 Experimental 4.26 0.37 0.08 2.85
Simulated 4.22 0.47 �2.24 13.46
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advantage of the use of Eqs. (20) and (21) to estimate the bubble surface and bubble volume PDFs is that the
probability to obtain bubbles of zero surface or volume is zero (see Fig. 9b and c). Thus, the bubble surface
and volume PDFs are strictly positive.

As previously mentioned, Fig. 10, which shows the deviation of the first sample moments, i.e. mean, stan-
dard deviation, skewness and kurtosis, of the bubble surface and bubble volume with respect to their exper-
imental values, indicates that the surface k-moment depends on the chord-length 2k-moment and the volume
k-moment depends on the chord-length 3k-moment. Consequently, the surface and volume moments, espe-
cially the mean and the standard deviation, are not as well estimated as their corresponding values for the bub-
ble diameters (shown in Fig. 8) for a finite number of samples since the sampled moments deviate from the
true moments as k increases. This result can be corroborated comparing the errors extracted from Tables 3
and 4 respectively. The low moments of the surface or volume PDFs, that provide its global shape, come from
the higher order chord-length moments and, therefore, in order to give a reliable estimate of moments of the
bubble surface or volume, a bubble sampling record larger than that needed for the estimate of bubble size
moments is required.



Fig. 9. (a) Optimal MaxEnt estimation for bubble surface, (b) optimal estimation for bubble surface from Eq. (20), (c) optimal MaxEnt
estimation for bubble volume, (d) optimal estimation for bubble volume from Eq. (21).

Fig. 10. Deviation of the first sample moments, i.e. mean, standard deviation, skewness and kurtosis, of the bubble surface and bubble
volume with respect to the experimental values.
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Obviously as the sample size increases, a better distribution is obtained, and a more reliable PDF can be
achieved from the experimental data. Thus, Fig. 11 shows that the MaxEnt distribution, obtained for one
of the sequences of chord-length simulated, approximates better to the real one as the number of samples
increases from 50 to 350. This figure also shows that error in the mean value of the distribution scarcely
changes when the number of samples is larger than 150 in this case. Similarly, as the sample size increases
the other higher-order moments approach to their respective experimental value. The convergence of these
moments to the experimental values is initially very fast as the sample size increase, indicating that the sample
size can be reduced drastically compared to the non-parametric approaches proposed by Liu et al. (1996, 1998)
and Santana and Macı́as-Machı́n (2000).

Since, shape and velocity of spiralling ellipsoidal bubbles are difficult to accurately measure with sampling
probes, it seems reasonable to briefly discuss the dependence of the results with the accuracy of the measure-
ments. Thus as can be deduced from Eq. (6), the errors in the bubble diameter estimation are directly propor-
Table 4
Error in the calculation of the first four moments of the bubble surface and volume shown in Fig. 10

S

Mean (mm2) Std (mm2) Skewness (�) Kurtosis (�)

Experimental 78.34 12.78 0.14 2.87
Simulated 77.18 13.83 1.87 14.64

V

Mean (mm3) Std (mm3) Skewness (�) Kurtosis (�)

Experimental 56.11 12.45 0.3 3.01
Simulated 55 12.21 �0.55 8.12

Fig. 11. Evolution of the MaxEnt distribution with the number of samples.
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tional to the errors in the measurements of the chord-length. Moreover, an overestimation (underestimation)
of the mean or standard deviation of the chord-length produces the same overestimation (underestimation) of
the mean and standard deviation of the bubble diameter. On the other hand, the overestimation (underesti-
mation) of the mean or standard deviation of the shape factor is inversely proportional to the overestimation
(underestimation) of the mean and standard deviation of the bubble diameter. The errors in the angle of attack
(errors in term t in Eq. (6)) do not affect appreciably the diameter estimation. These results can be observed in
Fig. 12, where it has been represented the effect of noise addition to each of the measurable, or estimated
variables (y,a,h) from the probe signals on the MaxEnt distribution. The artificial noise added, consists of
uniform noise of zero mean value and maximum relative error E. For example Fig. 12(a) shows a comparison
between the MaxEnt distributions obtained for distribution of chord-lengths, yi, and the same one with noise
addition, yer,i = yi(1 + E), where E is a uniform distribution ranging from �E to E. As Fig. 12 indicates, the
most important variables to obtain a reliable PDF are the chord-length and the shape factor. This figure also
shows that the errors in the angle of attack produce a negligible effect on the PDF estimation (Fig. 12(c)). Sim-
ilar results have been found in the estimation of the other characteristic diameters, D20, D30, D32. Furthermore,
Fig. 13 shows the effect of inaccurate measurements of the bubble shape factor on D20, D30, D32. It can be seen
that noise addition affects in great extent to the surface and volume equivalent diameter distributions, whereas
its effect on the Sauter diameter distribution is somehow weaker due to the dependence of each characteristic
diameter on the shape factor as indicated in Table 1. Notice that, D20 depends on a as approximately a�3/4,
while D32 depends as a�1/2. This dependence produces a worse estimation in the probability distribution of D20

than that of D32 when the same error is made in the shape factor estimation or measurement.
Fig. 12. Effect of noise addition on the estimation of bubble diameter PDF. The noise has been added to the input data of (a) chord-
length, (b) angle of attack and (c) shape factor.



Fig. 13. Effect of noise addition to shape factor on the estimation of bubble characteristic diameter PDFs: (a) D20, (b) D30 and (c) D32.
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5. Conclusion

A stable and fast procedure to estimate the bubble size, surface and volume distributions from sample
moments obtained from probe signals are proposed. The raw moments estimated are restricted to the ellipsoi-
dal bubble regime.

The most important length scales in two-phase flow: diameter, surface equivalent diameter, volume equiv-
alent diameter and Sauter diameter can be obtained from probe signals.

Furthermore, the maximum entropy (MaxEnt) estimated distribution fixes almost five sample moments,
avoiding the use of a backward transform. Additionally it is free of constant shape factor assumption.

The sample needed to obtain reliable distributions using the maximum entropy distribution is generally less
than the sample needed in non-parametric methods using backward transform.

The method proposed is optimal to infer bubble size distribution from probe signals and promising for
using it on population balance model, as only bubble sample moments are needed to infer bubble size, surface
or volume distributions.
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